ADVANCES IN NANOCOMPOSITES - SYNTHESIS, CHARACTERIZATION AND INDUSTRIAL APPLICATIONS

Edited by Boreddy S. R. Reddy
Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications
Edited by Boreddy S. R. Reddy

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2011 InTech
All chapters are Open Access articles distributed under the Creative Commons Non Commercial Share Alike Attribution 3.0 license, which permits to copy, distribute, transmit, and adapt the work in any medium, so long as the original work is properly cited. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source.

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book.

Publishing Process Manager Iva Lipovic
Technical Editor Teodora Smiljanic
Cover Designer Martina Sirotic
Image Copyright Perov Stanislav, 2010. Used under license from Shutterstock.com

First published March, 2011
Printed in India

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechweb.org

Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications,
Edited by Boreddy S. R. Reddy
p. cm.
free online editions of InTech Books and Journals can be found at www.intechopen.com
Contents

Preface XI

Part 1 Synthesis 1

Chapter 1 Preparation and Characterization of Inorganic-Organic Nanocomposite Coatings 3
Mirabdollah Seyed Sadjadi, Nazanin Farhadyar and K. Zare

Chapter 2 Synthesis and Analytical Applications of Quantum Dots Coated with Different Generations of DAB Dendrimers 23
Joaquim G.G. Esteves da Silva, Manuel Algarra and Bruno B. Campos

Chapter 3 Synthesis, Structural and Thermal Properties of Nano-porous SiO₂-based Aerogels 39
Hexin Zhang, Changqing Hong and Yingjie Qiao

Chapter 4 Polymer Nanocomposite Materials for Structural Applications 61
Vijaya Rangari

Chapter 5 Photochemically Implemented Metal/Polymer Nanocomposite Materials for Advanced Optical Applications 85
Lavinia Balan and Daniel-Joseph Lougnot

Chapter 6 PET-MMT and PET-PEN-MMT Nanocomposites by Melt Extrusion 101
Fausto Calderas, Guadalupe Sánchez-Olivares, Edtson Emilio Herrera-Valencia, Antonio Sánchez-Solís and Octavio Manero

Chapter 7 Synthesis of Nanosized Luminescent Materials and Their Photoluminescence under VUV Excitation 121
Yuhua Wang, Qizheng Dong, Zhaofeng Wang and Xue Yu

Chapter 8 Mechanochemically Synthesized Metallic-Ceramic Nanocomposite; Mechanisms and Properties 157
M. Khodaei, M.H. Enayati and F. Karimzadeh
Chapter 9 Synthesis of Hydroxyapatite/Collagen Bone-Like Nanocomposite and Its Biological Reactions 181
Masanori Kikuchi, Yoshihisa Koyama, Kazuya Edamura, Atsushi Irie, Shinichi Sotome, Soichiro Itoh, Kazuo Takakuda, Kenichi Shinomiya and Shigeo Tanaka

Chapter 10 Structure-Gas Transport Property Relationships of Poly(dimethylsiloxane-urethane) Nanocomposite Membranes 195
Boreddy S. R. Reddy and D. Gnanasekaran

Chapter 11 Rheology-Morphology Interrelationships for Nanocomposites based on Polymer Matrices 227
Valery Kulichikhin, Alexander Semakov, Valery Karbushev, Veronica Makarova, Eduardo Mendes, Hartmut Fisher and Stephen Picken

Chapter 12 Nanocomposite Electrolyte for PEMFC Application 263
Mahreni, A.B. Mohamad, A.A.H. Khadum and W.R.W. Daud

Chapter 13 Synthesis, Surface Modification and Characterisation of Nanoparticles 289
L.S. Wang and R.Y. Hong

Chapter 14 The Sol-Gel Route to Nanocomposites 323
Francesco Branda

Part 2 Electrochemical Properties 341
Chapter 15 Oxide-Matrix Based Nanocomposite Materials for Advanced Magnetic and Optical Functionalities 343
Eva Pellicer, Emma Rossinyol, Moisés Cabo, Alberto López-Ortega, Marta Estrader, Santiago Suriñach, Maria Dolors Baró, Josep Nogués and Jordi Sort

Chapter 16 Electromagnetic Characterization of Composite Materials and Microwave Absorbing Modeling 359
Davide Micheli, Carmelo Apollo, Roberto Pastore, Ramon Bueno Morles, Mario Marchetti and Gabriele Gradoni

Chapter 17 Magnetic Nanocomposite Devices for Cancer Thermochemotherapy 385
Lingyun Zhao, Yuying Wang, Bing Yang, Xiaoyu Xu, Yan Yan, Meijun Huo, Xiaowen Wang and Jintian Tang

Chapter 18 Electrokinetic Properties of Nanocomposite Fibres 403
Majda Sfiligoj Smole, Silvo Hribernik, Nika Veronovski, Manja Kurecic and Karin Stana Kleinschek
Chapter 19	Designing of Nano Composites of Conducting Polymers for EMI Shielding	S.K. Dhawan, Anil Ohlan and Kuldeep Singh
Chapter 20	Electrospinning Fabrication and Characterization of Water Soluble Polymer/Montmorillonite/Silver Nanocomposite Nanofibers out of Aqueous Solution	Jeong Hyun Yeum, Jae Hyeung Park, In Kyo Kim and In Woo Cheong
Chapter 21	Electrodeposition of Metal Matrix Nanocomposites: Improvement of the Chemical Characterization Techniques	Anabela Gomes, Isabel Pereira, Beatriz Fernández and Rosario Pereiro
Chapter 22	Fabrication of High Performance Fe-Si-Al Soft Magnetic Composites	You Junhua, Li Qingda and Qiu Keqiang
Chapter 24	Advanced Anticorrosive Coatings Prepared from Polymer-Clay Nanocomposite Materials	Wei-I Hung, Kung-Chin Chang, Ya-Han Chang and Jui-Ming Yeh
Chapter 26	Novel Chemical Vapour Deposition Routes to Nanocomposite Thin Films	Russell Binions and Ivan P. Parkin
Chapter 27	Polymer Nanocomposites - Fuel Cell Applications	G. Gnana Kumar and Kee Suk Nahm
Chapter 28	Corrosion Behavior of Ni/Al₂O₃ and Ni/ZrO₂ Nanocomposite Thin Films	Gheorghies Constantin, Stasi Iuliana-Valentina and Lalau Cornel-Constantin
Part 3 Carbon Nanotube 677

Chapter 29 A Fabrication Process of Composite Micro Components using Super Fine Stainless Steel and Ceramic Nano Powders 679
Mohamed Imbaby and Kyle Jiang

Chapter 30 Nanowire-Polymer Nanocomposites as Thermal Interface Material 685
Kafil M. Razeeb and Eric Dalton

Chapter 31 Poly(butylene terephthalate) Nanocomposites Containing Carbon Nanotube 707
Jun Young Kim

Chapter 32 Epoxy-based Carbon Nanotubes Reinforced Composites 727
Sreejarani K. Pillai and Suprakas Sinha Ray

Chapter 33 Energy Dissipation Capacity in MWCNTs Reinforced Metal Matrix Nanocomposites: An Overview of Experimental Procedure 793
S. Ziaei-Rad, F. Karimzadeh, J. Kadkhodapour and M. Jafari

Chapter 34 Thermal Conductivity Improvement of PEEK/ZrO₂ Coated MWCNT Nanocomposites 803
Kaushik Pal and Jin Kuk Kim

Chapter 35 Fabrication of Ion-Induced Carbon Nanocomposite Fibres and their Application to Magnetic Force Microscope Probes 817
Masaki Tanemura and Masashi Kitazawa

Chapter 36 Nano Reinforcements in Surface Coatings and Composite Interphases 837
Shang-Lin Gao and Edith Mäder

Part 4 Gas Sensor 855

Chapter 37 Nanocomposite Films for Gas Sensing 857
Dongfang Yang

Chapter 38 Mechanical Alloying: For Formation of Nanocomposite WC/MgO Materials 883
Shigen Zhu, Jun Ma, Meilin Zhang and Caixia Wu
Chapter 39 Nanocomposite Catalysts for Steam Reforming of Methane and Biofuels: Design and Performance 909
Vladislav Sadykov, Natalia Mezentseva, Galina Alikina, Rimma Bunina, Vladimir Pelipenko, Anton Lukashevich, Zakhar Vostrikov, Vladimir Rogov, Tamara Krieger, Arkady Ishchenko, Vladimir Zaikovsky, Lyudmila Bobrova, Julian Ross, Oleg Smorygo, Alevtina Smirnova, Bert Rietveld and Frans van Berkel

Chapter 40 Self-assembled Nanocomposite Oxide Films: Design, Fabrication, and Properties 947
Hao Yang, Qingquan Meng, Run Zhao, Jun Yang and Weiwei Li
Preface

Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications was conceived as a comprehensive reference volume on various aspects of functional nanocomposites for engineering technologies. The term functional nanocomposites signifies a wide area of polymer/material science and engineering, involving the design, synthesis and study of nanocomposites of increasing structural sophistication and complexity useful for a wide range of chemical, physicochemical and biological/biomedical processes. “Emerging technologies” are also broadly understood to include new technological developments, beginning at the forefront of conventional industrial practices and extending into anticipated and speculative industries of the future.

The book fills the gap between what you have learnt at the University and what you actually do practice in industry. It explains the major concepts of new advances in nanocomposites and their applications in a friendly, easy to understand manner and provides practical knowledge in different aspects of nanocomposites. This makes a transition from a college student to a “professional researcher” much easier.

The choice of materials for multi-author complications is always subject to a number of periodical and judicial limitations. These limitations notwithstanding, I have been privileged to benefit from the cooperation of many leading experts in nanocomposites, and also a number of senior researchers of well-known companies at the forefront and nanocomposites not frequently disclosed elsewhere. I must, in particular, acknowledge the courtesy of all the contributors in allowing me to organize their contributions in producing a cohesive and correlated compilation, and to minimize overlaps between closely related chapters.

The scope of the present book on nanocomposites and applications thus extends far beyond emerging technologies. This book presents 40 chapters organized in four parts systematically providing a wealth of new ideas in design, synthesis and study of sophisticated nanocomposite structures.

Part 1 introduces a wide selection of 14 chapters on synthesis of nanocomposites. The topics covered include core shell, quantum dots, thermal properties, structural, metal/polymer nanomaterials, PET-MMT and PET-PEN-MMT nanocomposites, nanosized luminescent materials, nanocomposites – theory, properties and applications, hydroxyapatite/collagen bone-like nanocomposites, poly(dimethylsiloxane-urethane) nanocomposite membranes, rheology-morphology interrelationships for nanocomposites, nanocomposite material as electrolyte and electrode in proton exchange membrane
fuel cell, characterization and application of nanocomposites, and sol-gel route to nanocomposites.

Part 2 comprises of 14 chapters devoted to electrochemical properties of oxide-matrix nanocomposite materials, composite materials, devices for cancer thermochemotherapy, electrokinetic properties, conducting polymers for EMI, electrospinning fabrication, electrodeposition of metal matrix, effects of Cu addition on the microstructures, spark plasma sintered NdFeB, anticorrosive coatings, NdFeB nanocomposite thin films, fuel cell application and corrosion behaviour of Ni/Al2O3.

Part 3 relates to 8 chapters pertaining to carbon nanotubes about fabrication of micro composite components, nanowire-polymer nanocomposites, PBT containing carbon nanotubes, ion-induced carbon nanocomposite fibers, epoxy-carbon nanotubes reinforced composites, damping capacity of MWCNTs, nano reinforcements in surface coatings and thermal conductivity of PEEK/ZrO2 coated MWCNTs.

Part 4 discusses gas sensors dealing with films, mechanical alloying, nanocomposite metal oxides and steam reforming of methane.

I would like to place on record that one of my Senior Research Fellows, Mr. D. Gnanasekaran, helped me in my editorial work to bring out this book successfully.

BSR Reddy,
Director Grade Scientist ‘G’ and Head,
Industrial Chemistry Laboratory,
Central Leather Research Institute,
Adyar, Chennai-600 020,
India
Part 1

Synthesis
Mechanochemically Synthesized Metallic-Ceramic Nanocomposite; Mechanisms and Properties

M. Khodaei, M.H. Enayati and F. Karimzadeh

Department of Materials Engineering, Isfahan University of Technology, Iran

1. Introduction

Solid state chemical reaction is attributed to the chemical reaction performed at temperature which reactants are solid. In most solid state chemical reactions the reaction volume continually diminishes as the reactants become spatially separated by the products. As a result, the kinetics of solid state chemical reactions are limited by the rate at which reactant species are able to diffuse across phase boundaries and through intervening product layers. Hence, the conventional solid state technique invariably require the use of high processing temperatures to ensure that diffusion rate is maintained at a high level (Schmalzried, 1995), (Stein et al., 1993). On the other hand, high temperature process invariably leads to formation of coarse-grained products due to the occurrence of grain growth. Such coarse-grained materials are generally undesirable for manufacturing advanced engineering components due to their problems such as poor mechanical properties, poor sinterability, and etc. Consequently, there is considerable interest in alternative synthesis techniques that either reduce the required processing temperature or eliminate the need for applied heating altogether (McCormick, 1995), (McCormick & Froes, 1998).

Mechanical milling has been recognized as an effective way of occurrence the solid state chemical reaction at low temperature. This process is considered as a means to mechanically induced solid state chemical reaction that occur in precursors powder mixture during collision in the grinding media (Suryanarayana, 2001). Mechanical milling could be classified as mechanical grinding, mechanical alloying (MA), and Mechanochemical synthesis (MCS) according to the precursors powder mixture as well as structural and chemical changes that occur during milling. The milling process that there is no change in chemical composition of precursors is attributed to the mechanical grinding. The mechanical alloying is refers to the formation of alloys by milling of precursor materials. Finally, in mechanochemical synthesis process the chemical composition of precursors changes as a result of mechanically induced solid state reaction. This process is also termed as reactive milling (Suryanarayana, 2001), (Takas, 2002).

In this chapter book, the fundamental and mechanisms of mechanochemical process is presented and the recent developments in mechanochemically synthesized metallic-ceramic nanocomposite are overreviewed.
2. Milling equipments

Mechanical milling usually performed using ball milling equipments that generally divided to “low energy” and “high energy” category based on the value of induced the mechanical energy to the powder mixture. The ball milling equipments used for mechanical grinding or mixing are low energy such as Horizontal mill. In mechanical milling processes that utilize to change the chemical composition of precursors, the high energy ball milling equipments is generally used. Mechanochemical reaction can be performed in various types of high energy ball mills, including attrition, planetary, and vibratory mills that schematically shown in Fig. 1.

![Diagram of various types of high energy ball mills](image)

Fig. 1. Various types of high energy ball mills: (a) planetary mill, (b) attrition mill, (c) 1D vibratory mill, and (d) 3D vibratory mill (Suryanarayana, 2001).

In an attrition mill, the rotating impeller cause to relative movement between balls and powders. In a planetary ball mill, a rotating disc and vials revolve in opposite direction in order of several hundred rpm. A trade name of Fritsch is an example of the planetary mills. In a 1D vibratory mill that also known as a shaker mill, the vessel is set in vertical oscillatory motion. 3D vibratory mills consist of vials which shake at s frequency about 20 Hz in a “figure-eight” trajectory. Spex 8000 is a commercial type of 3D vibratory mills. The mechanical energy that induced by attrition mills is significantly lower that planetary or vibratory mills. However, unlike planetary and vibratory mills, attrition mills are readily amenable to scale up, which allows mass production of powders through mechanochemical process (Suryanarayana, 2001).

3. Reaction kinetics of mechanochemical synthesis

The mechanochemical reactions are characterized by a large negative free energy change at room temperature and are therefore thermodynamically feasible at room temperature. However, commercial operations by the pyrometallurgical techniques are conducted at
elevated temperature to overcome the kinetic barriers and achieve sufficiently high reaction rates whereas; mechanochemical process can be used more generally to promote chemical reactions. The underlying mechanism of mechanochemical process is repeated deformation, fracture, and welding of the powder charge during collisions of the grinding media. Fracture of particles exposes fresh reacting surfaces and welding generates interfaces between reactant phases across which short-range diffusion can occur, thus allowing chemical reactions to take place without kinetic constraint. Diffusion rates are also enhanced by the high concentration of lattice defects, which provide “short circuit” diffusion paths (Schaffer & McCormick, 1990), (Forrester & Schaffer, 1995).

Mechanochemical reaction could be done by two different reactions kinetics, “gradual” or “sudden” reaction, depending on nature of precursors (magnitude of enthalpy change during chemical reaction) as well as milling condition. If the enthalpy change associated with the formation of the product phases is low, then the heat generated will be insufficient to significantly influence the reaction kinetics. Therefore, reaction will proceed in a gradual manner. Gradual mechanochemical reaction systems have generally been found to exhibit sigmoidal reaction kinetics. The reaction rate initially increases with milling due to increasing activation and microstructural refinement of the reactants. The reaction rate then reaches a maximum at an intermediate milling time before decreasing as the reaction approaches completion due to dilution of the reactants by the product phases (Forrester & Schaffer, 1995). The sudden reactions take place as a self-propagating combustion reaction when the reaction enthalpy is sufficiently high. Combustion during milling is detected experimentally by the temperature spike associated with a sudden release of heat (Takacs, 2002). Fig. 2 shows the variation in temperature of a milling vial during processing of a highly exothermic reactant mixture. In the initial stages of milling, the temperature gradually increases up to a steady-state value as a result of heat generated by collisions of the grinding media. Following the critical milling time, depending on the milling condition for same precursors, the vial temperature suddenly increases due to the heat generated by combustion of the reactants. The temperature then slowly decays to the previous steady-state value.

Fig. 2. Vial temperature as a function of time during milling of a combustive reaction system (Takacs, 2002).

Direct observation of ignition and propagation in mechanochemical combustion reaction during milling is also conducted by Deidda et al. (Deidda et al., 2004) using transparent
quartz vials. Fig. 3 shows the quartz vial at different time after starting the milling of the Ta:C=50:50 system. It is observed that the ignition begins after the initial time and then propagates. The local temperature of ignited powder is also recorded by pyrometer and presented as a function of milling time in Fig. 3.

The modality of displacement reactions can be specified by theoretical adiabatic temperature, T_{ad}, of the reaction. T_{ad} represents the temperature of heat releasing during chemical reaction. A value of $T_{ad}>1800$K is generally considered to be the minimum necessary temperature for the occurrence of self-propagating combustion in a thermally ignited system (Munir, 1988). In contrast, Schaffer and McCormick (Schaffer & McCormick, 1990) showed that a value of $T_{ad}>1300$K is adequate for the sudden occurrence of chemical reaction during ball milling. The T_{ad} value could be estimated from the following relation:

![Fig. 3. High speed image sequence of the reaction of Ta:C=50:50 in a quartz vial coupled with the related temperature recording obtained by the infrared thermometer (Deidda et al., 2004).](image)
\[\Delta H_r + \sum \int_{T_i}^{T_m} \Delta H + \sum \int_{T_i}^{T_{ad}} \Delta C_p = 0 \]

Where \(\Delta H_r \) is the heat of reaction, \(T_i \) is the initial temperature, the \(T_m \)'s are the melting points of products, the \(\Delta C_p \)'s are the molar heat capacities of the solid products, \(\Delta H \)'s are the heat of transitions of the products and \(\Delta C_p \)'s are the molar heat capacities of the liquid products. It should be noted that the last term in relation 1 is ignored if \(T_{ad} < T_m \)'s.

The experimental combustion temperature for several systems (recorded by pyrometer technique (Deidda, 2004)) and theoretical \(T_{ad} \) are presented in Table 1. As seen, the pyrometer recorded temperature of combustion reaction during milling is invariably close to the calculated \(T_{ad} \).

<table>
<thead>
<tr>
<th>Chemical system</th>
<th>Adiabatic temperature, (T_{ad}) (K)</th>
<th>Combustion temperature, (T_c) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti5Si3</td>
<td>2550</td>
<td>2420</td>
</tr>
<tr>
<td>TiSi</td>
<td>2370</td>
<td>1818</td>
</tr>
<tr>
<td>Ti5Si4</td>
<td>2193</td>
<td>2063</td>
</tr>
<tr>
<td>TiSi2</td>
<td>1829</td>
<td>1613</td>
</tr>
<tr>
<td>Ti170C30</td>
<td>1991</td>
<td>2183</td>
</tr>
<tr>
<td>Ti60C40</td>
<td>2614</td>
<td>2773</td>
</tr>
<tr>
<td>Ti50C50</td>
<td>3206</td>
<td>>2873</td>
</tr>
<tr>
<td>Ti350C50</td>
<td>2901</td>
<td>2870</td>
</tr>
</tbody>
</table>

Table 1. The experimental combustion temperature and the calculated adiabatic temperature for the various systems (Deidda et al., 2004).

4. Mechanochemical synthesis

It was recognized in 1989 that ball milling could be used to induce a solid state chemical reaction by demonstrating that the pure metal Cu can be synthesized when CuO and Ca were ball milled together at room temperature. Simultaneous reduction of CuO and ZnO by Ca has also been shown to result in the formation of brass (Schaffer & McCormick, 1989), (McCormick et al., 1989). After that the extensive researches for preparing other metals such as Fe, Ti, Zr, W, and etc. were performed. The mechanochemical reactions could be divided to two categories involve non-displacement and displacement chemical reactions. Non-displacement reactions are the chemical reaction occurred in the reactants in order to combine the elements to produce final phases. This process is similar to mechanical alloying. In displacement reaction, the reactants react to each others with exchange the element between them to form new phases. Most of the mechanochemical reactions studied have been displacement reactions of the type:

\[MO + R \rightarrow M + RO \]

Where a metal oxide (MO) is reduced by a more reactive metal (reductant, R) to the pure metal M. Metal chlorides and sulfides have also been reduced to pure metals this way. The products of displacement reactions normally consist of two phases, the metal (or a compound) and the oxide, chloride, or sulfide associated with the reactant. For preparing pure metallic phase, the by-product must be removed by removal processes such as
leaching. The removal of one of the phases produced by mechanochemical reaction may be difficult due to the high reactivity of the metallic phase associated with nanocrystalline structure and intermixing of the phases induced by mechanical forces (El-Eskandarany, 2001a). Therefore, utilizing the products of mechanochemical reaction to fabricate the composite structures could be useful to change the properties of each phase. Since, unlike chlorides and sulfides, the oxide phases could be used in structural application, the most mechanochemical reactions to synthesize composite structure have been used the reduction of oxide phase. Mechanochemically synthesized component with more than two phases offers a number of advantages over the conventional metal processing techniques. First it is enable to reduce a number of oxides and halides to desired compound at room temperature, thus it is cost effective. Second, if a number of components are reduced simultaneously, then it is possible to produce an alloy without first having to convert the oxides to pure metals and then to desired alloy. Third, for powder metallurgy application, it allows the direct formation of powder product. Fourth, severe plastic deformation induced during high energy ball milling cause to formation of nanocrystalline structure. Finally, the mechanochemically synthesized phases especially trough displacement reaction are chemically compatible (Suryanarayana, 2001), (Takacs, 2002).

Recently, synthesis of metallic-ceramic composite powder through mechanochemical reaction is considered because of advantages mentioned above. In this area, the ceramic (metallic) phase especially considered as reinforcement (tougher) for metallic (ceramic) phase to enhance its properties. This chapter presents an overview of the recent developments in mechanochemically synthesized metallic-ceramic nanocomposite consist of metal-ceramic and Intermetallic-ceramic trough displacement reaction.

4.1 Metal-ceramic nanocomposite

It is well known that the addition of hard ceramic particles to soft metals provides a combination of properties of both metallic matrix and ceramic reinforcement components. This may result in improvement of physical and mechanical properties of the composite (Rajkovic et al., 2008).

Many methods were studied to prepare metal-based composites. The one of methods for preparation of metal-base composite is casting. In this method, particles are added to molten metal by stirring before casting. However, the difference in thermal expansion coefficients between ceramic particles and molten metal constituents and the poor wettability between these two become an obstacle to the liquid method used for synthesizing metal matrix composite (Konopka & Szafran, 2006). Another way of producing both metal-based and ceramic-based composite is using powder metallurgy methods. In powder metallurgy methods, the composite powder is consolidated to producing composite part. In these methods, the powder could be prepared by mixing or reaction of constituents. The preparation of composite powder by mechanochemical reaction is expected an advanced method for fabrication of nanocrystalline part (El-eskandarany, 2001a).

One of the first reports on mechanochemical synthesis of metal-ceramic nanocomposite has been published by Matteazzi and Caer about alumina-iron nanocomposite powders produced by mechanochemical reaction between hematite and aluminum (Matteazzi & Caer, 1992). The mechanochemical reduction of copper oxide with different reductants such as Fe, Al, Ti, Ca, Ni and C has been investigated (Schaffer & McCormick, 1990), (Schaffer & McCormick, 1991). Their products were often a mixture of copper with dispersed oxides particle, i.e. copper matrix composites such as Cu–Al2O3 (Wu & Li, 2000), (Ying & Zhang, 2000), (Hwang et al.,
One of the most important ceramic particles used in structural application is Al₂O₃ (Ying & Zhang, 2000), (Hwang & Lee, 2005). The presence of fine Al₂O₃ articles in copper matrix leads not only to improve the hardness of this material, but also to decrease the grain growth rate at temperatures even close to the melting point of copper matrix. In this way, the amount, size and distribution of reinforcing particles play a critical role in enhancing or limiting the overall properties of the composite (Rajkovic et al., 2008). Hwang et al. (Hwang et al., 2004) (Hwang & Lee, 2005) synthesized Cu-Al₂O₃ nanocomposite powder by mechanochemical reaction between Cu₂O and Al according to the following reaction:

\[
3\text{Cu}_2\text{O} + 2\text{Al} + X\text{Cu} \rightarrow (6 + X)\text{Cu} + \text{Al}_2\text{O}_3
\]

The presence of Cu in the precursor powder mixture lead to formation of different amount of Al₂O₃ in the range of 4 to 21 volume percent. XRD pattern of powder mixture as-received and after different milling time are show in Fig. 4.

As can be seen, the Cu₂O peaks reduced and only the peaks related to the Cu is remained after milling. There is also no evidence of Al₂O₃ phase on XRD pattern that attributed to the peak broadening as a result of nanocrystalline or highly strained powder. Transmission Electron microscopy (TEM) of prepared powder after 140 h ball milling was performed for further investigation. Fig. 5 shows TEM bright field (Fig. 5a), dark field (Fig. 5b) and Selected Area Diffraction (SAD) pattern (Fig. 5c) obtained from a small particle of the nanostructural powder after milling for 140 h. Typical SAD patterns displayed spotty rings which could be indexed as a mixture of FCC Cu and Rhomboheral α-Al₂O₃. The fine structure of the spotty rings indicated that both Cu and α-Al₂O₃ phases took the form of predominantly nanostructural particles. Dark field imaging confirmed this and indicated a bimodal size distribution of nanocrystallites, with an average size of around 2–5 nm for the smaller crystals and around 10–20 nm for the larger ones. A TEM-energy dispersive spectroscopy (EDS) micrograph of the hot pressed samples contained 21 vol.% Al₂O₃ is given in Fig. 6 along with EDS spectra of the dark and bright phases. EDS spectra collected from the phases show that the dark phase is Cu while
the bright phase is Al₂O₃. The crystallite size of both phases in hot pressed 21 vol.% Al₂O₃ sample at different pressing temperatures (800 to 900 °C) reported in the range of 20 to 30 nm. The results of Rockwell hardness tests of hot pressed samples with different vol.% Al₂O₃ (from 4.1 to 20.9) are given in Table 2. The hardness of the hot pressed samples increases from 70 to 103 HRB with increasing vol.% of Al₂O₃. The hardness of the samples is in reasonable proportion to the vol.% of Al₂O₃ formed in Cu matrix.

Fig. 5. TEM images of nanostructural Cu-21 vol.% Al₂O₃ powder particle after 140 h milling time, (a) bright field image, (b) dark field image and (c) SAD pattern (Hwang et al., 2004).
Fig. 6. TEM bright field image and energy dispersive spectroscopy (EDS) micrograph of the hot pressed Cu-21 vol.% Al₂O₃ sample (Hwang & Lee, 2005).

Table 2. Rockwell hardness test on the hot pressed samples at 850 °C with different vol.% Al₂O₃ from 4.1 to 20.9 (Hwang & Lee, 2005).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Hardness number (HR₉)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-4.1</td>
<td>70 ± 4</td>
</tr>
<tr>
<td>HP-11.9</td>
<td>88 ± 2</td>
</tr>
<tr>
<td>HP-15.5</td>
<td>98 ± 3</td>
</tr>
<tr>
<td>HP-20.9</td>
<td>103 ± 1</td>
</tr>
</tbody>
</table>

It is also reported that a common way of increasing the low intrinsic strength of Cu is alloying with BCC elements such as Mo (Botcharova et al., 2004). Sabooni et al. synthesized the Cu-15Wt.% Mo/30Vol.% Al₂O₃ (Cu(Mo)-Al₂O₃) nanocomposite by mechanochemical reaction between MoO₃ and Al in presence of Cu (Sabooni et al., 2010). The modality of mechanochemical reaction in MoO₃+Al and MoO₃+Al+Cu powder mixture are determined as combustion mode according to the calculated T_{ad} as well as measured vial temperature. Fig. 7 shows the vial temperature during milling for MoO₃+Al (without diluent) and MoO₃+Al+Cu (with Cu as diluent) powder mixture. The presence of Cu leads to decrease the T_{ad} of MoO₃+Al reaction from 4773 to 2361 K and increase the combustion time.
The crystallite size of Cu in Cu(Mo)-Al₂O₃ calculated from XRD pattern using Williamson–Hall method after 60 h ball milling and subsequent annealing were reported about 30 and 50-80 nm, respectively. TEM images of 60 h milled powder presented in Fig. 8 reveal a homogenous dispersion of reinforcements with the size of about 10nm in the matrix. TEM images also approve the nanocrystalline structure of the matrix which had been obtained by Williamson–Hall method. The average microhardness values of pure Cu (Sabooni et al., 2010) and nanostructured Cu (Chen et al., 2006) increases from 39HV to 178 HV as a result of decreasing in crystallite size.

Addition of alloying element of Mo in order to have nanocrystalline solid solution leads to increase hardness to about 198 HV in Cu(Mo) (Sabooni et al., 2010). Finally, incorporation of ceramic nanoparticles in a nanocrystalline matrix of Cu(Mo) leads to high increase of hardness to 307HV in Cu(Mo)-Al₂O₃ (Sabooni et al., 2010) which is about eight times higher than the hardness of pure Cu. Three important strengthening mechanisms are suggested for high value of hardness in Cu(Mo)-Al₂O₃ nanocomposite: reduction of crystallite size, formation of Cu(Mo) solid solution and dispersion hardening of nanometric reinforcements in the nanocrystalline matrix.

Aluminum-based composites are ideal materials for structural applications in the aerospace and automotive industries due to their high strength-to-weight ratio (Clyne & Withers, 1995). Reinforcing the ductile aluminum matrix with stronger and stiffer second-phase reinforcements such as oxides, carbides, borides, and nitrides provides a combination of properties of both the metallic matrix and the ceramic reinforcement components (Piggott, 1980). In recent years, many researchers have paid attention to new fabrication techniques for making aluminum matrix composite. Synthesis of Al based nanocomposites by mechanochemical reaction has recently been examined by some researchers. Shengqi et al. have investigated the mechanochemical reaction of CuO and Al powder (Shengqi et al., 1998). Wu and Li have synthesized nanostructured aluminum matrix composite reinforced with CuAl₂ (100–500 nm in size), Al₂O₃ and Al₄C₃ (10–50 nm in size) (Wu & Li, 2000). The solid reactions between CuO and Cu–14 at.%Al alloy or Cu₉Al₄ intermetallic compound during high energy mechanical milling to produce Cu-Al/Al₂O₃ have been studied (Ying & Zhang, 2003). Arami et al. (Arami et al., 2008) synthesized the Al(Cu)-Al₂O₃ nanocomposite through gradual mechanochemical reaction because of nonstoichiometric composition of
CuO and Al (Al-5.8 wt.%CuO). TEM image and corresponding EDS analysis of Al-CuO powder mixture milled for 60 h is shown in Fig. 9. Nanometric alumina particles, mostly located at the grain boundaries, could be seen in Fig. 9.

Al(Ce)-Al2O3 nanocomposite is also fabricated by mechanochemical reaction in Al-CeO powder mixture (Reddy, 2007). Tavoosi et al. have also reported the formation of Al-13.8 wt.%Zn-5 vol.%Al2O3 (Al(Zn)-Al2O3) nanocomposite by mechanochemical reaction of Al-ZnO powder mixture followed by hot pressing (Tavoosi et al., 2008), (Tavoosi et al., 2009). The crystallite, relative density, and hardness of hot pressed samples with and without Al2O3 at different temperature are presented in Table 3.

Fig. 8. TEM bright field image of 60 h ball milled MoO3+Al+Cu powder mixture to produce Cu(Mo)-30 Vol.% Al2O3 nanocomposite at two magnifications (Sabooni et al., 2010).

Fig. 10 shows the hardness changes of bulk Al-13.8 wt.%Zn-5 vol.%Al2O3 and Al-13.8 wt.%Zn vs. annealing time at different temperatures. As can be seen from this figure, the hardness value for Al-13.8 wt.%Zn-5 vol.%Al2O3 after annealing at 200 and 400 °C remained constant. However, annealing at 500 °C for longer times causes grain growth and therefore a decrease in hardness value. The Al-13.8 wt.%Zn-5 vol.%Al2O3 is more stable than Al-13.8 wt.%Zn because of the effect of 5 vol.%Al2O3 nano-particles in the matrix (Tavoosi et al., 2009).

El-Eskandarany et al. synthesized Fe-MgO by mechanochemical reaction of Fe2O3 and Mg (El-Eskandarany et al., 2001). Co-Al2O3 nanocomposite is also prepared by mechanochemical reduction of CoO by Al. The average grain sizes of the nanocomposite powders are reported 19 nm for Co and 28 nm for Al2O3 after the completion of the reduction reaction (Li et al., 2007). Karimzadeh et al. also reported the synthesis of Zn-Al2O3 by mechanochemical reaction between ZnO and Al. The microhardness value of produced nanocomposite powder was about 350HV which was 10–15 times higher than the microhardness of pure zinc (20–30 HV) (Karimzadeh et al., 2008).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Temperature (°C)</th>
<th>Relative density (%) (S.D. 0.5%)</th>
<th>Hardness (HV)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-13.8 wt%Zn-5 vol%Al2O3</td>
<td>400</td>
<td>95</td>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>99.6</td>
<td>185</td>
<td>40</td>
</tr>
<tr>
<td>Al-13.8 wt%Zn</td>
<td>400</td>
<td>96</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>99.8</td>
<td>150</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 3. Relative density, hardness and crystallite size of bulk Al-13.8 wt.%Zn-5 vol%Al2O3 and Al-13.8 wt.%Zn (Tavoosi et al., 2009).
Fig. 9. TEM (bright field) image, EDS analysis and SAD pattern of Al–CuO powder mixture after 60 h ball milling (Arami et al., 2008).

Fig. 10. The hardness changes of Al–13.8 wt%Zn-5 vol%Al₂O₃ and Al–13.8 wt%Zn vs. annealing times at different temperatures (Tavoosi et al., 2009).
The presence of metallic particles in ceramics adds physical properties inherent to the metallic phase, such as electric and thermal conductivity or magnetic properties. This combination of properties makes ceramics–metals composite excellent candidates for electric, optic, and magnetic devices or chemical sensors. Some properties such as toughness and wear behavior of ceramic–metal composites are expected to be improved in comparison to monolithic ceramic phase (Chalwa, 1993). So, fabrication of ceramic matrix nanocomposite can strongly improve the room temperature toughness and high temperature strength of ceramics (Mishra & Mukherjee, 2001). Matteazzi and Caer synthesized nanometer-sized Al$_2$O$_3$–M composite (M= Fe, V, Cr, Mn, Co, Ni, Cu, Zn, Nb, Mo, W, Si) by mechanochemical reaction of an appropriate metal oxide and (Matteazzi & Caer, 1992). Recently, Heidarpour et al. synthesized Al$_2$O$_3$–Mo nanocomposite with different volume percent of Mo (Heidarpour et al., 2009). Mostaan et al. also reported for the first time on mechanochemical reaction in Nb$_2$O$_5$+Al powder mixture to synthesizing Al$_2$O$_3$–Nb nanocomposite (Mostaan et al., 2010a). They investigated the reaction mechanism and activation energy (E$_a$) of aluminothermic reaction between Al and Nb$_2$O$_5$ under non-isothermal conditions using XRD and differential thermal analysis (DTA). It was found that the mechanically milled Al–Nb$_2$O$_5$ powder mixture was converted to Al$_2$O$_3$–Nb composite in three stages and during the reduction intermediate Nb oxides (NbO$_2$ and NbO) were formed (Mostaan et al., 2010c).

4.2 Intermetallic-ceramic nanocomposite

Intermetallic compound is an important class of materials because of a combination of its high tensile strength, low density, good wear resistance, and creep resistance. These properties have led to the identification of several potential usages including structural applications and protective coatings (Sauthoff, 1995). Two major problems that restrict the application of Intermetallic are poor low-temperature ductility and inadequate high-temperature creep resistance. These limitations can be overcome by introducing ceramic particles as reinforcements (Morris, 1998). Originally, reinforcement phase can be introduced in the matrix by two routes namely ex-situ addition of reinforcement particles and in-situ formation of reinforcement phase via a displacement reaction which both phase (Intermetallic and ceramic) are formed during ball milling. The later route can be done by mechanochemical process which has an advantage over other fabrication route because of its capability of producing chemical compatible phase as well as nanosized structure with high uniformity. The important Intermetallic compound is NiAl, FeAl, TiAl, and NiTi that mechanochemically synthesized intermetallic-ceramic nanocomposite were overviewed. Development of NiAl–Al$_2$O$_3$ nanocomposites by mechanical milling has been achieved by the milling of Ni–Al–Al$_2$O$_3$ (Lin et al., 2000) and NiO–Al powder mixture (Oleszak, 2004), (Anvari et al., 2009), (Udhayabanu et al., 2010). In order to fabricate the Ni$_3$Al- or NiAl-based composite via mechanochemical displacement reaction, the nickel oxide (NiO) could be used to reduce by aluminum according to the following reactions:

$$3\text{NiO} + 3\text{Al} \rightarrow \text{Ni}_3\text{Al} + \text{Al}_2\text{O}_3$$ \hspace{1cm} (4)

$$3\text{NiO} + 5\text{Al} \rightarrow \text{NiAl} + \text{Al}_2\text{O}_3$$ \hspace{1cm} (5)

The first report on synthesis of NiAl–Al$_2$O$_3$ nanocomposite by mechanochemical reaction of stoichiometric 3NiO+5Al powder mixture was reported by Oleszak (Oleszak, 2004). XRD
pattern of 3NiO+5Al powder mixture as-received and after different ball milling time are presented in Fig. 11. XRD pattern of 3NiO+5Al powder mixture as-received and after 1 h milling time show the peaks corresponding the NiO and Al phases whereas the XRD pattern of 1.5 h ball milled sample indicates the formation of NiAl and Al₂O₃ phases. The crystallite size and lattice strain of phases measured from XRD pattern using Williamson-Hall Method were reported in the range of 40-50 nm and 0.4% for 2 h milled and 10-20 nm and 0.9% for 4 h milled samples.

Anvari et al. investigated the mechanochemical reaction of NiO–38 wt% Al and NiO–34 wt% Al–41 wt% Ni in order to give the final product NiAl–Al₂O₃ composite with 40 and 20 vol.% contribution of alumina, respectively (Anvari et al., 2009). They reported that NiAl–40 vol.% Al₂O₃ high exothermic reaction did not occur during the milling process, due to the presence of Ni content in initial mixture. Increasing Ni concentration increased the start time of NiAl and Al₂O₃ formation, and changed the morphology of products. XRD patterns of NiO+Al and NiO+Al+Ni powder mixtures as-received and after different milling times are shown in Fig. 12 and 13, respectively. As can be seen, the NiAl and Al₂O₃ phases were synthesized in both samples during milling.

Udhayabanu et al. also synthesized nanocrystalline NiAl based nanocomposite with 30 vol.% of Al₂O₃ by carrying out milling of NiO, Al, and Ni powder mixture in toluene medium for 20 h followed by heating. They reported NiAl phase formation and NiO reduction occur gradually and simultaneously during milling. Small amount of NiO which remains unreacted in 20 h milling got reduced at 420 °C on heating. Small amount of Ni₃Al phase is also formed as intermediate product and it later transforms to NiAl phase above 900 °C on heating. The amorphous alumina is formed as the product of the NiO reduction by Al and it transforms to stable α-Al₂O₃ at 1000 °C via the formation of metastable transition γ-Al₂O₃. The TEM results revealed that the α-Al₂O₃ particles are 11±3 nm in size and the average crystallite size of NiAl phase is 115±40 nm in the 20 h milled powder after heating to 1120 °C.

Fig. 11. XRD pattern of 3NiO+5Al powder mixture as-received and after different ball milling time (Oleszak, 2004).

Udhayabanu et al. also synthesized nanocrystalline NiAl based nanocomposite with 30 vol.% of Al₂O₃ by carrying out milling of NiO, Al, and Ni powder mixture in toluene medium for 20 h followed by heating. They reported NiAl phase formation and NiO reduction occur gradually and simultaneously during milling. Small amount of NiO which remains unreacted in 20 h milling got reduced at 420 °C on heating. Small amount of Ni₃Al phase is also formed as intermediate product and it later transforms to NiAl phase above 900 °C on heating. The amorphous alumina is formed as the product of the NiO reduction by Al and it transforms to stable α-Al₂O₃ at 1000 °C via the formation of metastable transition γ-Al₂O₃. The TEM results revealed that the α-Al₂O₃ particles are 11±3 nm in size and the average crystallite size of NiAl phase is 115±40 nm in the 20 h milled powder after heating to 1120 °C.
Fig. 12. XRD patterns of NiO–38 wt% Al powder mixtures as-received and after milling for 0.5 h (Anvari et al., 2009).

Fig. 13. XRD traces of NiO–34 wt% Al–41 wt% Ni powder mixtures as-received and after different milling times (Anvari et al., 2009).
Mousavi et al. reported the Synthesis of NiTi-Al₂O₃ nanocomposite by mechanochemical reaction of a powder mixture containing NiO, Al, Ti and Ni. They also reported the combustion mechanochemical reaction between NiO and Al leading to the formation of nanocomposite for this dialueed system in presence of Ni and Ti (Mousavi et al., 2009).

Iron aluminides compound, especially FeAl and Fe₃Al compounds, possess a combination of attractive physical, thermal and mechanical properties including low density, high tensile strength, good oxidation, corrosion, and sulfidation resistance. These properties along with low cost make iron aluminides potentially useful for structural and coating applications (Sauthoff, 1995). Incorporation of ceramic reinforcement in iron aluminides lead to enhance the high temperature strength (Subramanaian et al., 1997), (Subramanaian et al., 1998) as well as wear resistance of iron aluminides (Alman et al., 2001). Oleszak and Krasnowski synthesized FeAl-Al₂O₃ nanocomposite by mechanochemical reaction of Fe₂O₃+4Al powder mixture (Oleszak & Krasnowski, 2001). They reported the average crystallite size of 10 nm after ball milling and 40-50 nm after subsequent annealing. Khodaei et al. investigated the mechanochemical synthesis of Fe₃Al-Al₂O₃ with different vol.% of Al₂O₃ (Khodaei et al., 2008), (Khodaei et al., 2009a), (Khodaei et al., 2009b). The thermodynamic consideration based on the theoretical adiabatic temperature, \(T_{ad} \), associated with different reactions between Fe₂O₃, Al, and Fe, has revealed the modality of the mechanochemical reaction. Fe₃Al-Al₂O₃ nanocomposite powder containing 57vol. % Al₂O₃ was synthesized by mechanochemical combustion reaction of 3Fe₂O₃+8Al powder mixture. Combustion reaction in this system is detected by abrupt increase in vial temperature (Khodaei et al., 2009a). The combustion is also observed by opening of vial at the expected time. Fig. 14 shows the opened vial during the combustion reaction.

![Fig. 14. Images of opened vial during combustion reaction of 3Fe₂O₃+8Al powder mixture.](image)

The XRD patterns of 3Fe₂O₃ + 8Al powder mixture as-received and after different milling times are shown in Fig. 15. XRD patterns of powder mixture after 2 h of milling time (prior to combustion reaction) was identified as a mixture of Fe₂O₃ and Al with nanocrystalline structure. XRD patterns immediately after combustion, Fig. 15(c), showed no Fe₂O₃ and Al peaks. The diffraction lines of reaction products were identified as Al₂O₃ and Fe₃Al intermetallic compound. The results showed successfully synthesized Fe₃Al and Al₂O₃ by mechanochemical reaction of 3Fe₂O₃ + 8Al powder mixture. In contrast, Fan et al. reported that during reaction of Fe₂O₃ and molten aluminum in 3Fe₂O₃ + 8Al system, instead of thermodynamically predicted Fe₃Al intermetallic compound, FeAl₂O₄ predominately forms
Mechanochemically Synthesized Metallic-Ceramic Nanocomposite; Mechanisms and Properties

(Fan et al., 2006). In order to study the distribution of phases and microstructure of Fe₃Al-Al₂O₃ nanocomposite, the produced powder after 20 h of milling time was cold pressed and then sintered at 1400 °C for 1 h. Cross-sectional micrograph of sintered specimen is shown in Fig. 16. As seen, the distribution of Fe₃Al and Al₂O₃ phases is homogeneous.

![XRD patterns of 3Fe₂O₃ + 8Al powder mixture as-received and after different milling times (Khodaei et al., 2009a).](image)

This ultrafine (>2μ) and uniform microstructure of metallic–ceramic phases without “core–rim” feature is resulted from ball milling process (Khodaei et al., 2009a). Khodaei et al. also synthesized Fe₃Al-30 vol.% Al₂O₃ nanocomposite by addition of Fe to Fe₂O₃+Al powder mixture. The modality of mechanochemical reaction of Fe₂O₃+Al+Fe powder mixture is determined by calculating the Tad of reaction as a gradual way (Khodaei et al., 2009b). For comparison, the Fe₃Al-30 vol.% Al₂O₃ nanocomposite was also prepared by ex situ addition of Al₂O₃ nanopowder to Fe–Al powder mixture followed by ball milling. The Fe₃Al-30 vol.% Al₂O₃ powders prepared by these two routes were consolidated in order to study the microstructure as well as mechanical properties of the samples. Cross-sectional SEM micrographs of the sintered samples are shown in Fig. 17. The distribution of Fe₃Al and Al₂O₃ phases in ex situ added Al₂O₃ sample is not homogeneous whereas for mechanochemically synthesized sample which involved in situ formation of Al₂O₃, a uniform distribution of Al₂O₃ is achieved. Moreover, the microstructure of mechanochemically synthesized sample is finer than that obtained for ex situ added Al₂O₃ sample and contains lower amount of porosity (Khodaei et al., 2009b). Subramanian et al. synthesized the Fe₃Al-20 vol.% Al₂O₃ composite via reactive sintering of Fe₂O₃ and FeAl powder mixture by pressureless sintering (Subramanian et al., 1997) and hot pressing (Subramanian et al., 1998) had a foam-type feature in which the Al₂O₃ phase are formed as rings around the Fe₃Al matrix (Fig. 18), probably from a reaction of FeAl and Fe₂O₃ located along the grain boundaries. These results show that the microstructure of Fe₃Al–Al₂O₃ composite produced by mechanochemical process has better characteristics compared to other processing routes. Evaluation of the mechanical properties of consolidated samples included the determination of hardness and fracture stress by three-point flexure testing at room temperature. These values for mechanochemically synthesized and ex situ added Al₂O₃ samples produced by Khodaei et al. compared with reactive sintered samples...
produced by Subramanian et al. are given in Table 4. As can be seen, the hardness and fracture strength values of mechanochemically synthesized nanocomposite are higher than those produced by other methods.

Fig. 16. SEM cross-sectional microstructure of consolidated Fe$_3$Al– 57 vol.% Al$_2$O$_3$ nanocomposite powder prepared by mechanochemical reaction (Khodaei et al., 2009a).

Fig. 17. SEM cross-sectional microstructure of consolidated Fe$_3$Al– 30 vol.% Al$_2$O$_3$ nanocomposite powder prepared by: (a) mechanochemically synthesized (b) ex situ added Al$_2$O$_3$ followed by ball milling. (Khodaei et al., 2009b).
Fig. 18. SEM micrographs of an Fe₃Al-20 vol.% Al₂O₃ processed by an in situ displacement reaction via reactive sintering (Subramanian et al., 1998).

Table 4. Vicker’s hardness and room temperature three-point fracture stress of Fe₃Al-Al₂O₃ samples prepared by different routes (Khodaei et al., 2009b).

<table>
<thead>
<tr>
<th>Composition</th>
<th>Fabrication route of Al₂O₃</th>
<th>Hardness (Hv)</th>
<th>Fracture stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃Al-30 vol.% Al₂O₃</td>
<td>Mechanochemical</td>
<td>538 ± 20</td>
<td>173 ± 9</td>
</tr>
<tr>
<td>Fe₃Al-30 vol.% Al₂O₃</td>
<td>Al₂O₃ nanopowder</td>
<td>490 ± 42</td>
<td>43 ± 6</td>
</tr>
<tr>
<td>Fe₃Al</td>
<td>Reactive sintering</td>
<td>378 ± 19</td>
<td>Not tested</td>
</tr>
<tr>
<td>Fe₃Al-20 vol.% Al₂O₃</td>
<td>Reactive sintering</td>
<td>222 ± 2</td>
<td>107 ± 2</td>
</tr>
<tr>
<td>Fe₃Al-20 vol.% Al₂O₃</td>
<td>Reactive sintering</td>
<td>355 ± 30</td>
<td>184 ± 2</td>
</tr>
<tr>
<td>Fe₃Al</td>
<td>-</td>
<td>308 ± 5</td>
<td>896 ± 2</td>
</tr>
</tbody>
</table>

Rafiei et al. (Rafiei et al., 2009) reported the synthesizing (Fe,Ti)₃Al–Al₂O₃ nanocomposite by mechanochemical reaction in Fe+Al+TiO₂ powder mixture. Addition of third alloying element such as Ti and Cr to Fe₃Al intermetallic compound can lead to the improvement of mechanical properties. They found that the TiO₂ is gradually reduced by Al during milling. This reaction led to the formation of crystalline Ti and amorphous Al₂O₃. On further milling Ti (reduced from TiO₂) and remaining Al dissolved into Fe lattice and formed a Fe(Al,Ti) solid solution which transformed to (Fe,Ti)₃Al intermetallic compound with disordered DO3 structure at longer milling times. Annealing of final structure led to the crystallization of amorphous Al₂O₃ and ordering of (Fe,Ti)₃Al matrix.

Forouzanmehr et al. (Forouzanmehr et al., 2009) reported the synthesis TiAl-Al₂O₃ nanocomposite by mechanochemical reaction of TiO₂ and Al and subsequent annealing. They found that titanium oxide is gradually reduced by Al during milling. The Al(Ti) solid solution formed at the early stage of milling. Diffusion of Ti into Al is found to be dominant process. Fig. 19 shows TEM micrographs and SAD pattern of the powder milled for 60 h followed by annealing at 900°C. Fig. 19(a) displays the bright field micrograph and Fig. 19(b) shows dark field micrograph indicating nano-sized phases with less than 50 nm. The SAD pattern, Fig. 19(c), also indicates fine crystalline size as well as the absence of preferred orientation. They also reported the good agreement regarding the grain size of the phases estimated from TEM observation and that from XRD analysis using Williamson–Hall method.
Zakeri et al. for the first time reported the mechanochemically synthesized MoSi$_2$–Al$_2$O$_3$ nanocomposite by ball milling of mixture of MoO$_3$, SiO$_2$ and Al powder (Zakeri et al., 2007). They found that this reaction proceeds through the combustion mechanochemical reaction. NbAl$_3$–Al$_2$O$_3$ nanocomposite powder with 40 vol.% Al$_2$O$_3$ was also directly synthesized by Mostaan et al. (Mostaan et al., 2010b) using mechanochemical reaction between Nb$_2$O$_5$ and Al powders. Measurement of vial temperature, XRD analysis, and morphology changes during ball milling confirmed the occurrence of combustion reaction which led to the formation of NbAl$_3$ intermetallic compound and Al$_2$O$_3$ phase. Thermal behavior results showed that nanocomposite powders were stable during heating. XRD pattern of Nb$_2$O$_5$ and Al powder mixture as-received and after different milling time are shown in Fig. 20.

Fig. 19. TEM micrographs of TiAl-Al$_2$O$_3$ nanocomposite powder produced by milling of TiO$_2$+Al for 60 h followed by annealing at 900 °C: (a) Bright field, (b) Dark field, and (C) SAD pattern (Forouzanmehr et al., 2009).

Fig. 20. XRD pattern of Nb$_2$O$_5$ and Al powder mixture as-received and after different milling times (Mostaan et al., 2010b)
5. Conclusion

The mechanochemical processing is a technique that could be used to synthesize composite structure which has an advantage over other fabrication route because of its capability of producing chemical compatible phase as well as nanosized structure with high uniformity. These advantages provide a useful technique for preparation of nanocomposite powder used in fabrication of advanced engineering parts through powder metallurgy methods. The future works in this area should be done in utilizing the advanced powder metallurgy methods for consolidation of mechanochemically synthesized nanocomposite powders.

6. References

